翻訳と辞書
Words near each other
・ Embranthiri
・ Embrasure
・ Embrasure (dentistry)
・ Embratel
・ Embratur
・ Embraze
・ Embree
・ Embree Glacier
・ Embree, Garland, Texas
・ Embree, Newfoundland and Labrador
・ Embreea
・ Embreeville
・ Embreeville Historic District
・ Embreeville, Pennsylvania
・ Embreeville, Tennessee
Embree–Trefethen constant
・ Embres-et-Castelmaure
・ Embreville
・ Embriaco family
・ Embrico of Mainz
・ Embrik Strand
・ Embrikilium
・ Embrikiola
・ Embrithini
・ Embrithopoda
・ Embrithosaurus
・ Embrittlement
・ Embroidered lace
・ Embroidered patch
・ Embroiderers' Guild


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Embree–Trefethen constant : ウィキペディア英語版
Embree–Trefethen constant
In number theory, the Embree–Trefethen constant is a threshold value labelled ''β
*''.
For a fixed positive number ''β'', consider the recurrence relation
: x_=x_n \pm \beta x_ \,
where the sign in the sum is chosen at random for each ''n'' independently with equal probabilities for "+" and "−".
It can be proven that for any choice of ''β'', the limit
:\sigma(\beta) = \lim_ (|x_n|^) \,
exists almost surely. In informal words, the sequence behaves exponentially with probability one, and ''σ''(''β'') can be interpreted as its almost sure rate of exponential growth.
We have
:''σ'' < 1 for 0 < ''β'' < ''β
*'' = 0.70258 approximately,
so solutions to this recurrence decay exponentially as ''n''→∞ with probability 1, and
:''σ'' > 1 for ''β
*'' < ''β'',
so they grow exponentially.
Regarding values of σ, we have:
* σ(1) = 1.13198824... (Viswanath's constant), and
* σ(''β''
*) = 1.
The constant is named after applied mathematicians Mark Embree and Lloyd N. Trefethen.
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Embree–Trefethen constant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.